

Pure Sine Wave Inverter 1 – 5 kW User Manual

Manual Version: INV-1-5kW-LION- 2018-4-V10R5/6

Table of Contents

Uı	npack	ing and Inspection	6
G	lossar	y of Terms	7
1.	IMF	PORTANT INFORMATION AND SAFETY INSTRUCTIONS	8
2.	INT	FRODUCTION	9
	2.1	General Description	9
	2.2	Key Features	9
3.	OP	PERATION MODES	10
	3.1	UPS System	10
	3.2	Off-Grid System (No Grid Supply)	10
	3.3	Grid Assisted Solar Power System	10
4.	NV	ERTER OVERVIEW	11
	4.1	Inverter Front & Side View	11
5.	IN۱	/ERTER OVERVIEW	12
	5.1	Inverter Layout	12
6.	IN۱	/ERTER INSTALLATION	13
	6.1	Planning the Installation	13
	6.2	Installing the Inverter Mounting Bracket	14
7.	GE	NERAL WIRING INFORMATION	15
	7.1	Earthing Of The Equipment	16
	7.2	Inverter Neutral Connection	17
	7.2	.1 Inverter Connected to the Grid	17
	7.2	.2 Off-Grid Connection	17
	7.3	AC Wiring	18
	7.4	Pre-Wiring Procedure	18
	7.5	Inverter AC Input wiring	18
	7.6	Inverter AC Output wiring	18
	7.7	AC Input Wiring and Circuit Breaker Sizes at 100% Output	19
	7.8	AC Input Wiring and Circuit Breaker Sizes at 200% Output	19
	7.9	DC Wiring	21
	7.10	Battery Connection Methods	21
	7.1	0.1 Series Connection	21
	7.1	0.2 Parallel Connection	21
	7.1	0.3 Series and Parallel Connection	21
	7.11	Lithium Ion – Freedom Won BMS Wiring Diagram	22
	7.1	1.1 Wiring Designation	22
	7.12	Lithium Ion With No BMS	23

	7.13	N	Naintenance and service	24
8.	. IN	VER	TER OPERATION	25
	8.1	Fro	nt Panel LCD Display/Keypad and Description	25
	8.2	Inv	erter Status LED's	25
	8.2	2.1	Inverter ON and Grid Supplying the Load	26
		Inverter ON and the Battery Supplying the Load "Inverter Mode"	26	
8.2.3 Inverter Displaying WARNING "Battery Low Battery Capacity"		Inverter Displaying WARNING "Battery Low Battery Capacity"	26	
8.2.4 Inverter Warning Switched OFF due to Battery LOW/HIGH Battery Voltage		Inverter Warning Switched OFF due to Battery LOW/HIGH Battery Voltage	26	
	8.3	Che	ecks Prior To Start-Up	27
	8.4	Sta	rt-Up Procedure	27
	8.5	Sw	itching the Inverter On & Off	27
	8.5	5.1	Switching the inverter "ON"	27
	8.5	5.2	Switching the inverter "OFF"	27
9.	. IN	VER	TER MENU	28
	9.1	Pov	wer rating of the UPS	28
	9.2	Bat	ttery Volts and Amps	28
	9.3	Bat	ttery Charge Amps and Volts	28
	9.4	Ou	tput Volts and Amps	28
9.5 Grid Volts and Grid Amps				28
9.6 Temperature			28	
9.7 Signal Strength				28
	9.8	Ser	rial Number & Software Version	28
	9.9	Sys	stem Setup	29
	9.10	В	Battery Setup	29
	9.11	L	og Menu	29
	9.12	Е	xit & Save	29
	9.13	R	Restore Factory Settings	29
	9.14	Е	xit Do Not Save	29
1(). E	BATT	TERY SETUP SETTINGS	30
	10.1	В	Battery Setup Settings - Quick Reference Guide	30
	10.2	В	Sattery Setup Procedure	31
	10.3	В	Sattery Type	31
	10.4	В	Battery Charging Rate	31
	10.5	A	C Input Power From Generator	32
	10.6	В	Battery Boost Voltage	33
	10	.6.1	Battery Boost Voltage Settings	33
	10.7	В	Battery Float Voltage	34

10.7	.1 Battery Float Voltage Settings	34		
10.8	Battery Boost Time	34		
10.9	Battery Low Voltage Shut Down			
10.10	Force Charge	35		
11. SE	TUP MENU SETTINGS	36		
11.1	Setup Menu - Quick Reference Guide	36		
11.2	Setup Menu Settings	37		
11.3	Normal Sense	37		
11.4	Solar Control Mode	37		
11.5	Battery Run To Voltage	38		
11.6	AC Run To Voltage	38		
11.7	Transfer Switch Time	40		
11.8	Load Monitoring	40		
11.9	Inverter Output Power	41		
11.9	.1 AC Output = Normal	41		
11.9	.2 AC Output = 200%	41		
11.10	Load Transfer Time	42		
11.11	Save/Restore/ Do Not Save Menu	42		
12. LO	GS	43		
12.1	Battery Voltages	43		
12.2	Battery Currents	43		
12.3	Grid Voltage	43		
12.4	Grid Current	43		
12.5	UPS Voltages	43		
12.6	UPS Current	43		
12.7	Thermal Log	43		
12.8	Total Run Time	43		
12.9	Run Time On Battery	43		
12.10	Time on Battery	43		
12.11	No of Overloads	43		
12.12	No of Short Circuits	44		
12.13	Forced Shutdown Counts	44		
12.14	Power Failure Counts	44		
12.15	Reset a few logs	44		
12.16	Exit Recorded Log	44		
12.17	Delete All Logs	44		
13. TR	OUBLESHOOTING	44		

14.	SF	PECICATIONS OF INVE	ERTERS	45
			ations	
14	.2	24 V Inverter Specifica	ations	45
14	.3	36 V Inverter Specifica	ations	46
14	.4	48 V Inverter Specifica	ations	46
15.	DI	ESTRIER ELECTRONIC	CS LIMITED CARRY- IN WARRANTY	47
16.	RI	EGISTRATION OF MY N	MICROCARE PRODUCT	48

This manual applies to all Microcare 1-5kW Inverters with Software Version: V10R5 and V10R6

Please Note:

This Inverter is pre-programmed with a set of default values.

These settings might not be correct for your battery type.

Please contact your battery supplier for your battery specifications

"Battery Float Voltage, Boost Voltage, Boost to Float Time " Absorb Time"

and program the Inverter accordingly

Unpacking and Inspection Upon receipt the unit should be unpacked and inspected for any damage during shipment. Verify that the contents of the box include: 1 x Inverter as per the Identification Label 1 x Wall mounting bracket 1 x User Manual (Warrantee registration information) The identification label is positioned on the top of the inverter MICROCARE INPUT VOLTS 12 24 36 48 Eg: a 5Kw48v Inverter MODEL ..Kw 1Kw 2Kw 3Kw 5Kw 10Kw 15Kw **OUTPUT AMPS** 4.5 9.1 13.6 22.7 45.5 54.5 OUTPUT 220 VAC 50Hz SERIAL No: MC Figure 1-0-1

This manual applies to all Microcare 1-5kW Inverters with Software Version: 10R5

Please Note:

This Inverter is pre-programmed with a set of default values.

These settings might not be correct for your battery type.

Please contact your battery supplier for your battery specifications

"Battery Float Voltage, Boost Voltage, Boost to Float Time " Absorb Time"

and program the Inverter accordingly

Glossary of Terms

AC Alternating Current

Ah Rated battery capacity specified in Ampere-Hour.

AC Run To The level the solar regulator will charge the battery to before the inverter

switches back to battery power

AC Source The primary AC input that is connected to the inverter, e.g., Mains Grid or

Generator.

Bat Run To The level the battery discharges to before switching to mains power

Bat Off At The voltage at which the inverter will disconnect the load from the batteries.

DC Direct Current

Grid Connected A system that is connected to the grid

Inverter Is an electronic device or circuitry that changes direct current (DC) to alternating

current (AC).

Inverter Mode The inverter is producing AC from the batteries.

LED Light emitting diode.

Load Electrical appliance or device to which an electrical voltage is fed

Off-Grid A system not connected to the grid

Solar Array A collection of Solar Panels.

PV Photo Voltaic solar power

State of Charge (SoC) Referring to the battery charge condition.

Sealed Battery A lead acid battery with no access to the electrolyte - either valve regulated or

gel. No hydrogen gas discharge during normal operation.

Flooded Battery A lead acid battery with access caps for maintaining the electrolyte - replacing

water lost during recharge operations. Hydrogen gas discharged during normal

recharge

SoC State of Charge is the amount of charge in the battery bank expressed as a % of

the battery capacity. When SoC = 100% the battery is fully charged. When the

SoC is 50% then the battery is half charged.

1. IMPORTANT INFORMATION AND SAFETY INSTRUCTIONS

- Installers should be qualified electricians or technicians
- The installation information in the manual is for information purposes only.
- The monitoring and operation information in this manual is intended for anyone who needs to operate the inverter.
- The inverter output cannot be paralleled with another inverter or AC source.
- Read the instructions carefully before installing and operating the Inverter.
- Inverter connection and installation instructions must be followed.
- The unit should only be opened by skilled personal.
- To reduce risk of electric shock, disconnect all wiring before making any attempt to maintain or to clean the unit. Turning off the INVERTER will not reduce this risk.
- Retain the load within the rating of Inverter to prevent faults.
- · Keep the Inverter clean and dry.
- The Inverter will not operate without batteries.
- The Inverters should be installed indoors, in a ventilated and dry area.
- The mounting surface should be able to support the weight of the inverter.
- Mount the inverter vertically.
- Do not install the Inverter on a rugged or inclined surface.
- Do not install the Inverter near water or in a damp environment.
- Do not install the Inverter where it would be exposed to direct sunlight.
- Do not remove the inverter casing while the unit is powered on.
- Keep the Inverter away from heat emitting sources.
- Do not block the inverter ventilation openings.
- Do not leave objects on top of the Inverter.
- Do not expose the Inverter to any corrosive gasses.
- Install the inverter away from any explosive gasses.
- Ambient temperature: 0°C 40°C
- AC Input and Output circuit breakers have not been provided and must be installed.
- The INVERTER must be used with a battery supply of nominal voltage that matches the inverter as on the "Identification Label".
- Sketches are intended for illustrative purposes only and are not intended to provide an electrical design.
- Do not disconnect the batteries while the Inverter is switched on.
- When shutting down the system, disconnect the load first, then disconnect the Grid and then power down the inverter.

Do not switch the battery breaker off when the unit is operating or in any other mode when connected to the grid.

Damage caused by reverse polarity, lightning and surges is not covered by warranty.

/\\WARNIN

High AC voltage present and is capable of causing severe injury.

.

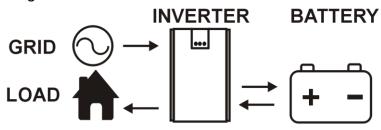
2. INTRODUCTION

2.1 General Description

The Microcare Inverters comes with the latest software included, to improve the automatic change over from the grid to the Inverter. Our cutting edge software innovations allow for uninterrupted supply to a range of applications from a sensitive server room to industrial machines. The Inverter is able to anticipate load failure and pre-charges the circuits for rapid transfer of power and change-over up to 4 times faster. The Microcare Inverter can run at 200% the capacity continuously when the grid is present and should the grid fail, the Inverter will return to its rated power. Microcare Inverters use galvanic isolation which makes them highly robust and reliable with low standby current and high efficiency

2.2 Key Features

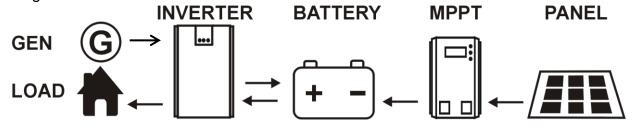
- Bi-Directional Inverter.
- Available for 12/24/36/48 (VDC) systems.
- Output power from 1–5kW.
- UPS, Off-Grid or Solar Grid Assisted Mode.
- LCD display and low idle current.
- High surge capacity for motor start.
- Timed overload capacity with auto shutdown.
- · Adjustable transfer switch time.
- 3-Attempt auto restart with short circuit protection.
- Built in, high rate, multi-stage battery charger.
- Minimum local service turnaround time with a 3 year warranty.
- Fan cooling for optimum performance and component longevity.
- Audible buzzer indicating faults, overload and status.
- Wall Mounted.
- User adjustable settings.
- Remote monitoring via GSM (Optional) or Battery Monitor and Web Logger (Optional)
- Manufactured in South Africa.


3. OPERATION MODES

3.1 UPS System

The inverter is used as an *UPS*. This operation mode is used for systems that have the grid available as the main AC supply. The grid will supply the load. When the grid supply is interrupted or lost, then the inverter switches to inverter mode. The batteries power the load via the inverter circuitry. When the grid power returns, the load reconnects with the grid. The internal charger charges the batteries when the grid is available.

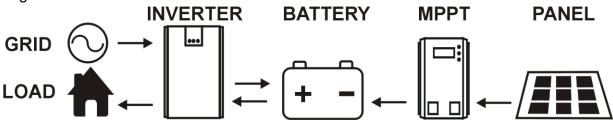
For this mode of operation select "Normal Sense" in the UPS mode setup menu.


Figure 3-1

3.2 Off-Grid System (No Grid Supply)

When the inverter is used as an *OFF-Grid* solution, the inverter runs in inverter mode. The batteries power the load via the inverter circuitry. Renewable energy charges the batteries. For this mode of operation select "**Normal Sense**" in the UPS mode system setup menu. A generator can be connected to the inverter to assist with charging and supplying the load when required.

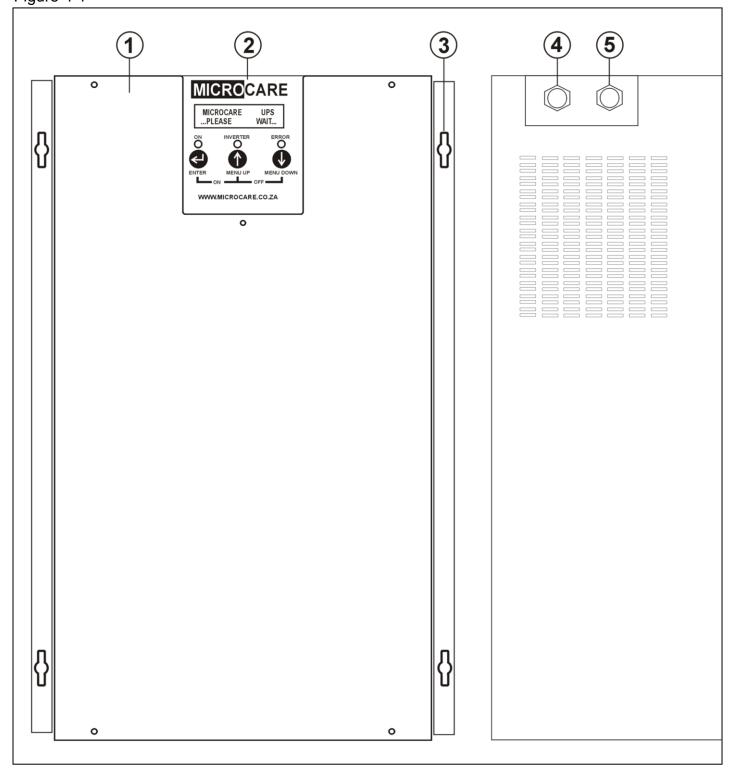
Figure 3-2



3.3 Grid Assisted Solar Power System

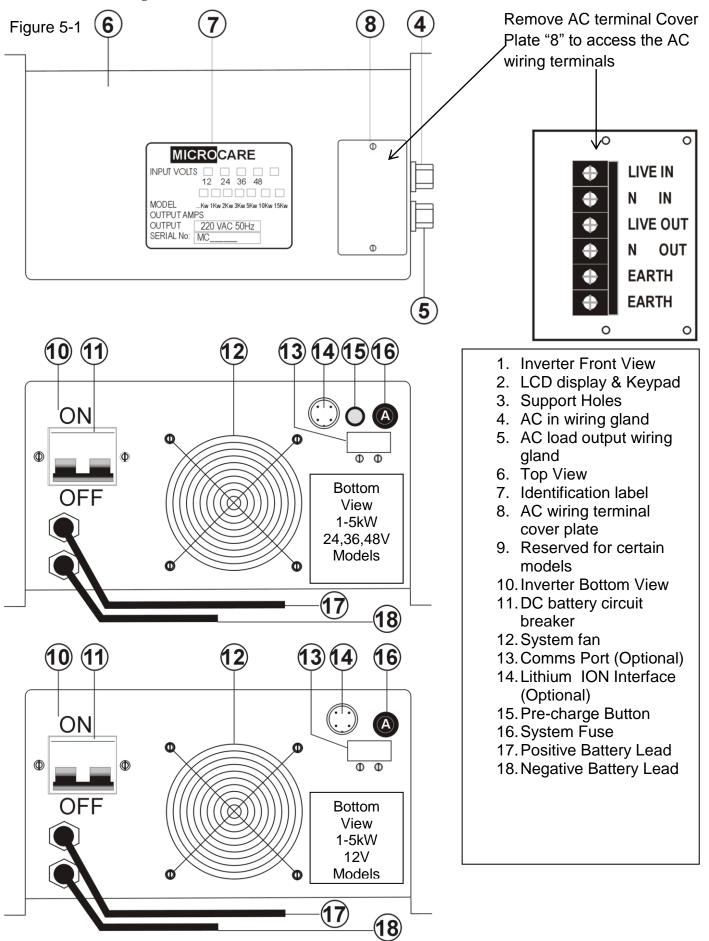
In a Grid assisted system the inverter mainly runs in the inverter mode and the batteries power the load via the inverter circuitry. Renewable energy charges the batteries. The load runs from battery power until the batteries have discharged to a set level. At this level, the load is disconnected from the batteries and the load is connected to the grid. As soon as the batteries are charged to a set level, the load disconnects from the grid and the load is powered from battery power.

For this mode of operation select "**Solar Control**" in the UPS mode system setup menu.


Figure 3-3

4. **NVERTER OVERVIEW**

4.1 Inverter Front & Side View


Figure 4-1

11

5. INVERTER OVERVIEW

5.1 Inverter Layout

6. INVERTER INSTALLATION

Consider the following when installing the inverter.

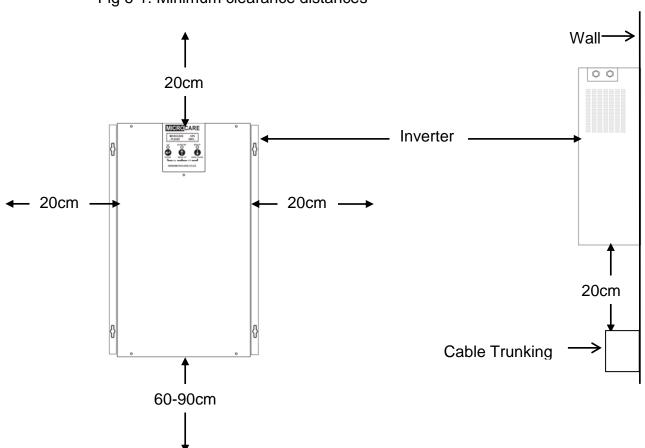
6.1 Planning the Installation

Location

- Install the Inverter indoor in a dry protected location away from any sources of moisture.
- Find a suitable temperature resistant surface to mount the inverter.
- Provide enough space for the routing of external wiring, Sub DB board and additional accessories.
- The mounting surface must support the weight of the inverter.
- Exposure to saltwater is particularly destructive.
- Do not mount the inverter in a closed container.
- Unrestricted airflow is required for the inverter to operate at optimal efficiency.
- Ensure a 200mm unrestricted clearance at the top, left and right side of the inverter
- Do not install the inverter in the same compartment as non-sealed batteries.
- Locate the Inverter as close as possible to the batteries in order to keep the battery cables as short as possible as supplied with the inverter.
- If flooded batteries are used, install them in a separate room or compartment.

Orientation

The unit must be mounted in a "VERTICAL POSITION" against the wall.

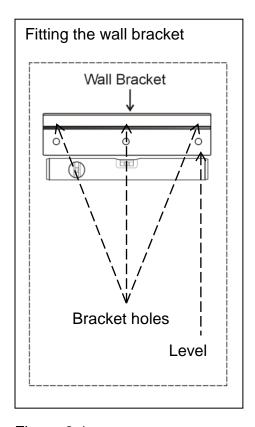

Temperature

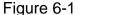
Away from sources of high temperature.

Height

Install the inverter so that the display is at eye level.

Fig 6-1: Minimum clearance distances




6.2 Installing the Inverter Mounting Bracket

- Find a suitable temperature resistant surface to mount the inverter.
- Provide enough space for the routing of external wiring, Sub DB board and additional accessories.
- The mounting surface must support the weight of the inverter.
- 4
- Check for existing electrical or plumbing prior to drilling holes in the walls.
- Position the wall mounting bracket against the wall at a height where the top of the inverter is at eye level.
- Ensure a 200mm unrestricted clearance at the top, left and right side of the inverter.
- Level the wall mounting bracket and mark the 3 holes on the surface. Fig 6-1.
- Drill the 3 holes into the wall.
- Using anchor bolts, secure the bracket against the wall
- Mount the inverter on the wall bracket
- The inverter is heavy and if dislodged from the mounting bracket can cause damage to external wiring and can cause bodily harm.

For additional support, support the inverter from dislodging by doing the following

- Mark the support holes on the wall.
- Remove the inverter from the mounting bracket.
- Drill the supporting holes into the wall.
- Re-mount the inverter on the wall bracket.
- Fit the support wall plugs and tighten firmly.

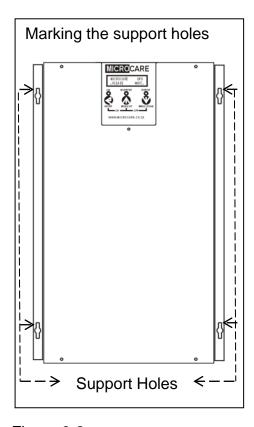
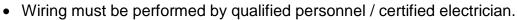



Figure 6-2

7. GENERAL WIRING INFORMATION

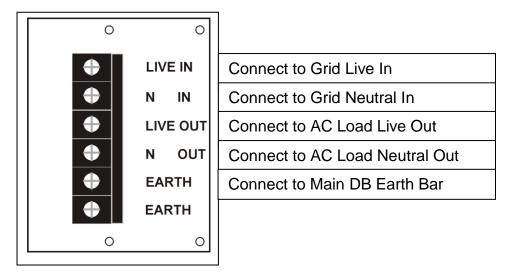
- Familiarize yourself with the content of the manual following before commencing with the wiring
- The line voltage "AC" applied must comply with the inverter's specified input voltage.
- The AC connections are located at the top of the inverter under the wiring terminal cover.
- Do not connect the AC output of the inverter directly to another AC source.
- e. 🔨
- The inverter is not designed for parallel operation with another inverter.
- If an electrical load distribution board or sub distribution board is fed from the inverter AC output and the load is also required to be powered from another AC source, the AC load, AC source and the inverter output should be connected to a manual or automatic transfer switch.
- An earth leakage must be fitted at the inverter AC output and not on the AC source input line.
- Make sure the BATTERY INPUT CIRCUIT BREAKER is OFF before attempting any wiring
- Battery interconnection cables must be a minimum of 35mm² and as short as possible.
- Connect the Positive terminal of the inverter battery cable to the Positive post of the battery and connect the Negative terminal of the inverter battery cable to the Negative post of the battery.

Warning! The inverter battery input is not reverse polarity protected.

Reverse polarity will damage the unit!!

7.1 Earthing Of The Equipment

Equipment surge protection products are an effective way of controlling dangerous surges that can enter a facility.


When strategically placed and correctly installed, the Surge Protectors will effectively reduce harmful over voltage conditions that can damage electrical and electronic equipment. It is important that the protection system includes both structural and surge protection equipment.

When lightning current passes into the ground through any conductor (Example: Tree Trunk) a powerful electromagnetic force is set up due to the fast rise times of the strike. This electromagnetic force then couples into any inductive loops that may be available in nearby buildings. When these currents equalize, damage usually occurs to the equipment.

Table 7-1

1 4010 1 1				
Lightning	Lightning Protection Zones			
LPZOA	This zone is an area where a direct hit to the structure is possible. The current may rise to a value of 200000A (10/350us) producing extremely high electromagnetic fields. Any conductor system must be capable of carrying the full lightning current.			
LPZOB	This zone is an area where a direct hit is not possible, but high electromagnetic fields will be present. This zone is determined by the effectiveness of the structural protection system.			
LPZ1	Again, a direct hit in this area is not possible due to the screening measures applied. The electromagnetic field is much lower than LPZOA and LPZOB. It is in this zone where appropriate surge arresters may be fitted that will limit the value of surge current entering a facility.			
LPZ2	The value of surge current and electromagnetic field will be lower than that of LPZ1 when correct protection principles have been applied. It is in this area where sensitive electromagnetic equipment may be safely installed.			

Figure 7-1

When Mains is connected to the inverter the Neutral connection is bonded to Earth via the Mains utility supply, earth bar.

If the Inverter is connected as a stand-alone inverter with no Mains Connection, the Neutral is required to be earthed using an earth spike.

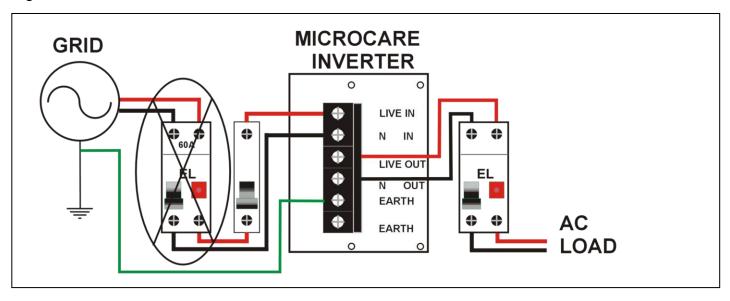
If the Inverter is not earthed; warranty will be null and void.

7.2 Inverter Neutral Connection

7.2.1 Inverter Connected to the Grid

When connecting the inverter to AC from the grid, the inverter input must not be connected via an earth leakage.

The earth leakage must be connected directly after the inverter

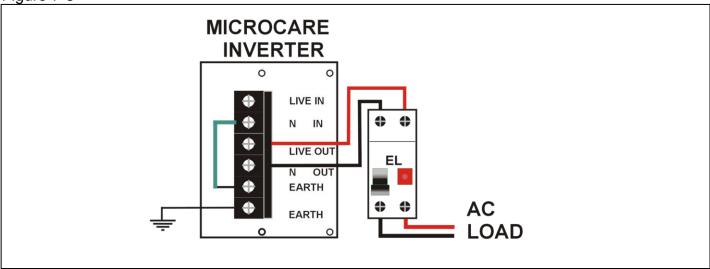

Keep the inverter neutral input connected to the GRID neutral at all times.

Connect the inverter Earth to the Earth Bar on the DB board.

When switching off the GRID input to the inverter, only **SWITCH OFF LIVE**. **Refer to Figure 7-2**

The grid will pull the inverter neutral to 0v.

Figure 7-2



7.2.2 Off-Grid Connection

For an **OFF-GRID** application you need to bridge the **Neutral Input** to the **Earth** terminal on the inverter AC wiring terminal block.

You can now fit an earth leakage after the inverter. Refer to Figure 7-3

Figure 7-3

7.3 AC Wiring

The inverter AC input and AC load output wiring must be sized correctly and fitted with appropriate circuit breakers. Refer to Table 7-2: AC Wiring - Wiring and circuit breakers for the correct wiring and circuit breaker sizes.

7.4 Pre-Wiring Procedure

Make sure that the wiring to and from the inverter is not connected to any AC sources. Switch off the inverter battery circuit breaker,

Remove the AC wiring terminal cover plate by unscrewing the 2 cover plate screws.

Remove the 2 cable glands from the terminal compartment.

Install the supplied glands.

Unscrew the wiring terminal screws until a clicking noise is heard, this is to ensure that the terminals are screwed fully open.

AC wiring should be fed through the appropriate glands and terminated into the correct terminals.

7.5 Inverter AC Input wiring

Feed the AC Input wiring through the correct gland. Strip adequate insulation from the end of each wire. Individually insert the bear end of the: Live In, Neutral In and Earth Wires fully into the correct terminal slots till it stops and tighten the screws firmly.

Tighten the cable gland ends.

7.6 Inverter AC Output wiring

Feed the AC output wiring through the correct gland
Strip adequate insulation from the end of each wire.
Individually insert the bear end of the Live Out and Neutral Out wires

Individually insert the bear end of the Live Out and Neutral Out wires Figure 7-4 fully into the correct terminal slots till it stops and tighten the screws firmly. Tighten the cable gland ends.

The neutral conductor must be maintained such that the operation of the inverter isolator will not alter the bonding between Neutral and Earth.

Earth the inverter by connecting the earth from the Main Distribution Board "DB" to the inverter Earth wiring terminal.

 \triangle Earth leakage devices must be fitted after the inverter. On the load AC wiring side. Refer to Figure 7-2

AC Wiring Terminals

7.7 AC Input Wiring and Circuit Breaker Sizes at 100% Output

Table 7-2: AC Wiring - Wiring and circuit breakers

Table 7-2 . AC Willing - Willing and circuit breake			Juil Dieakeis
Inverter Model	Wattage	Inverter Input Circuit Breaker Current Rating	Conductor Size: Cross- Sectional Area mm ²
1kW12V	1000	10 A	1,50
1Kw24V	1000	10 A	1,50
1Kw36V	1000	10 A	1,50
1Kw48V	1000	10 A	1,50
2Kw12V	2000	20 A	2,50
2Kw24V	2000	20 A	2,50
2Kw36V	2000	20 A	2,50
2Kw48V	2000	20 A	2,50
3Kw24V	3000	25 A	2,50
3Kw36V	3000	25 A	2,50
3Kw48V	3000	25 A	2,50
5Kw24V	5000	45 A	6,00
5Kw36V	5000	45 A	6,00
5Kw48V	5000	45 A	6,00

7.8 AC Input Wiring and Circuit Breaker Sizes at 200% Output

Table 7-3: AC Wiring - Wiring and circuit breakers

			1
Inverter Model	Wattage	Main Input Circuit Breaker Current Rated at 125% of Total Current	Conductor Size: Cross- Sectional Area mm ²
1kW12V	1000	15 A	1,50
1Kw24V	1000	15 A	1,50
1Kw36V	1000	15 A	1,50
1Kw48V	1000	15 A	1,50
2Kw12V	2000	25 A	2,50
2Kw24V	2000	25 A	2,50
2Kw36V	2000	25 A	2,50
2Kw48V	2000	25 A	2,50
3Kw24V	3000	40 A	6,00
3Kw36V	3000	40 A	6,00
3Kw48V	3000	40 A	6,00
5Kw24V	5000	60 A	10,00
5Kw36V	5000	60 A	10,00
5Kw48V	5000	60 A	10,00

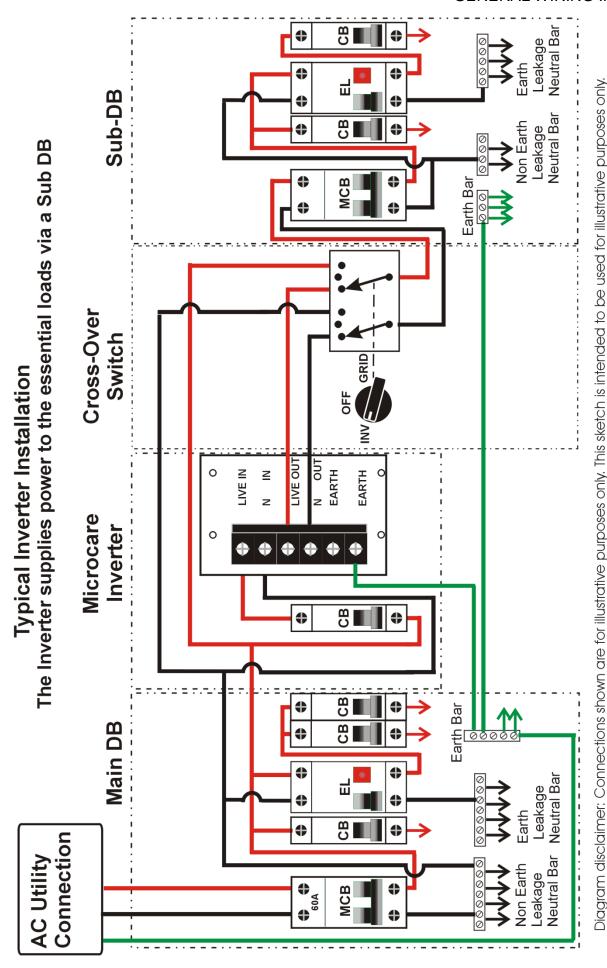


Figure 7-4: Sample Wiring Diagram

Circuit Breaker, Isolators ratings are not shown, ratings are sized by the size of the inverter and the loads connected.

EL= Earh Leakage, CB = Circuit Breaker, DPI = Double Pole Isolator, MCB = Main Cuircuit Breaker.

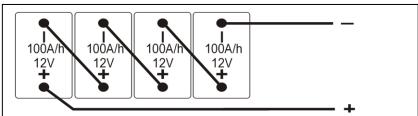
This sketch is not intended to provide an electrical design.

7.9 DC Wiring

Warning! The Inverter battery input is not reverse polarity protected. Reverse polarity will damage the unit!!

The battery connection leads between the inverter and batteries should be kept to a minimum length. The inverter comes supplied with pre-fitted battery cables and must not be shortened. Shortening the battery leads will void the warranty of the inverter.

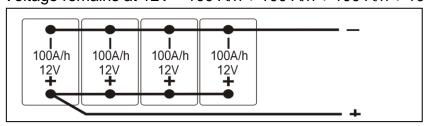
Before connecting the battery leads to the battery/batteries make sure that the batteries are connected according to the correct operating voltage for the model of inverter.eg: 12 VDC, 24 VDC system, etc. Refer to section 7.10


Connect the Positive (Red) battery lead terminal from the inverter to the positive post of the battery.

Connect the Negative (Black) battery lead terminal from the inverter to the negative post of the battery.

7.10 Battery Connection Methods

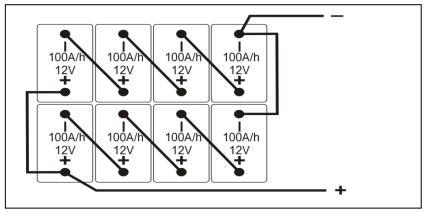
7.10.1 Series Connection


12V + 12V + 12V + 12V = 48V A/h remains at 100 A/h

Series Connection (Voltage increases, amperage stays the same as a single battery)

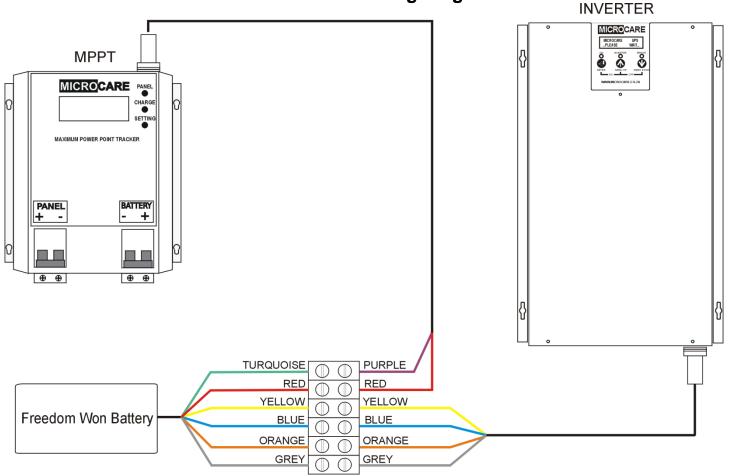
7.10.2 Parallel Connection

Voltage remains at 12V 100 A/h + 100 A/h + 100 A/h + 100 A/h = 400 A/h



Parallel Connection (Voltage stays the same as a single battery, amperage increases)

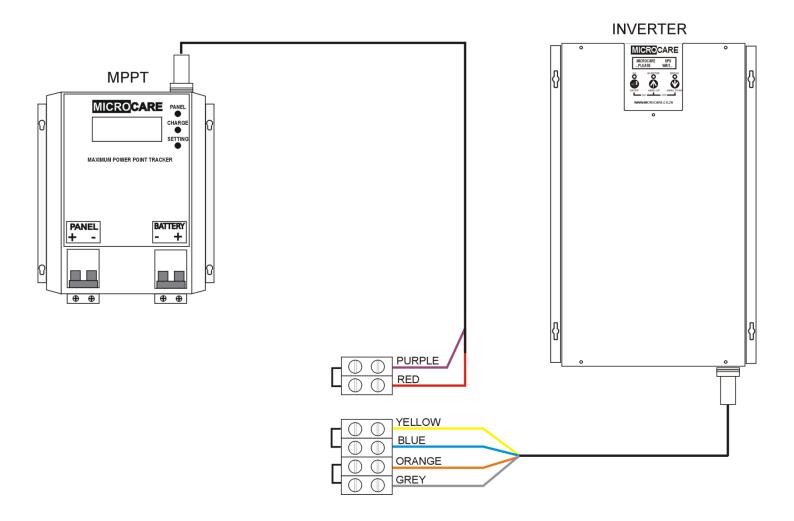
7.10.3 Series and Parallel Connection


Voltage increases to 48 V

A/h increases to 200 A/h

2 Strings of batteries in series, connected in parallel Series/Parallel Connection (both voltage and amperage increase)

7.11 Lithium Ion – Freedom Won BMS Wiring Diagram


7.11.1 Wiring Designation

WIDE COLOUR	MODE DIN	
WIRE COLOUR	MPPT WIRE FUNCTION	MPPT PIN NUMBER
RED	Solar Charge Controller Enable (NO)	2
TURQUIOSE	Solar Charge Controller Enable (COM)	1

WIRE COLOUR	INVERTER WIRE FUNCTION	INVERTER PIN NUMBER
YELLOW	Inverter Enable (NO)	3
BLUE	Inverter Enable (COM)	1
ORANGE	Inverter Charge Enable (NO)	2
GREY	Inverter Charge Enable (COM)	1

(NO = Normally Open) (COM = Common)

7.12 Lithium Ion With No BMS

If the Lithium Ion battery has no BMS installed connect:

MPPT:

• Connect the Purple wire to the Red wire to enable charging.

Inverter:

- Connect Yellow wire to the Blue wire.
- Connect the Orange wire to the Grey wire t enable inverter charging.

7.13 Maintenance and service

Caution – Risk of Electric Shock.

Batteries may cause electric shock and have a high short-circuit current.

Please take the precautionary measures specified below and any other measures necessary when working with batteries.

Remove wristwatches, rings and other metal objects.

Use only tools with insulated grips and handles.

Wait a minimum of five minutes after power has been turned OFF before starting an inspection.

Also confirm that the charge light is OFF and that the DC bus voltage has dropped below 25Vdc.

Never touch high voltage terminals in the inverter.

Make sure power to the inverter is disconnected before disassembling the inverter.

Only authorized personnel should perform maintenance, inspection, and replacement operations.

8. INVERTER OPERATION

8.1 Front Panel LCD Display/Keypad and Description

Figure 8-1: LCD Display & Keypad

The front Panel Display/Keypad indicates the Inverter's operational information, including output voltage, battery voltage, output load, internal temperature and is used for programming. Panel Display/Keypad operation explained.

Button Function Description

Symbol	Button Name	Function description		
4	Enter	Confirms or store DATA, increment or decrement values and to reset alarm conditions.		
•	Menu Up	Navigates through the list of operational information, parameters and functions.		
•	Menu Down	Navigates through the list of operational information, parameters and functions.		

Press and hold both turns the inverter "ON".

Press and hold both turns the inverter "OFF"

8.2 Inverter Status LED's

Indicator	Indicator Name	Description
	On	Led on: Indicates the INVERTER is turned on and operating normally
	Inverter	Led on: Notification that the Inverter is inverting power from DC Power to AC Power
	Error	Led on: Indicates the INVERTER is in a fault condition because of inverter shutdown or over temperature

8.2.1 Inverter ON and Grid Supplying the Load

ON	INVERTER	ERROR

8.2.2 Inverter ON and the Battery Supplying the Load "Inverter Mode"

ON	INVERTER	ERROR

8.2.3 Inverter Displaying WARNING "Battery Low Battery Capacity"

			WARNING!!! LOW BATTERY CAPACITY
ON	INVERTER	ERROR	DATTERT OALAOITT
			Steady "ON", Green , Yellow and Red LED Buzzer sounds continuously Press to clear the buzzer and warning

8.2.4 Inverter Warning Switched OFF due to Battery LOW/HIGH Battery Voltage

			, , , , , , , , , , , , , , , , , , ,
			UPS LOW/HIGH BATTERY
			Steady "ON", Yellow and Red LED Buzzer sounds continuously
ON	INVERTER	ERROR	

Please Note:

This Inverter is pre-programmed with a set of default values.

These settings might not be correct for your battery type.

Please contact your battery supplier for your battery specifications

"Battery Float Voltage, Boost Voltage, Boost to Float Time " Absorb Time"

and program the Inverter accordingly

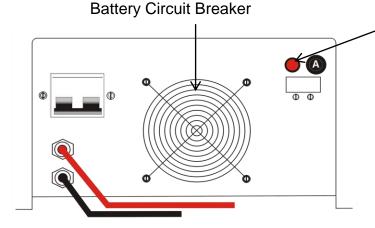
8.3 **Checks Prior To Start-Up**

Ensure the INVERTER is mounted vertically.

Check if the Input and Output cables are secured.

Check if the Battery voltage meets the INVERTER rating.

Ensure that the polarity of the battery connections is correct.


AC supply to the inverter is switched off.

External Load circuit breaker is switched off.

8.4 Start-Up Procedure

Press and hold the RED PRECHARGE BUTTON for 3 seconds until the display shows writing then turn on the BATTERY CIRCUIT BREAKER while holding the RED PRECHARGE BUTTON in.

Once the BATTERY CIRCUIT BREAKER has been turned ON, the RED PRECHARGE **BUTTON** can be released.

NOTE: The pre-charge button is not fitted on our 12 V Inverters.

To start-up a 12 V Inverter, Turn on the battery breaker.

Figure 8-2: Pre-Charge button position

The display will show the following:

MICROCARE **UPS** ...PLEASE WAIT...

The display then changes to

UPS TURNED OFF ...CALIBRATING...

The display then changes to

UPS TURNED OFF

Press the ENTER Button and the display will change to:

MICROCARE 5KW **INVERTER** OFF

8.5 Switching the Inverter On & Off

Switching the inverter "ON" 8.5.1

Press and hold both and buttons for up to 3 seconds.

MICROCARE 5KW INVERTER ON

The UPS will start up and the Green LED will light up to

indicate the power is being supplied from the inverter to the load. (Yellow when no mains)

Switching the inverter "OFF" 8.5.2

Press and hold both **and buttons** for up to 3 seconds, the UPS will turn OFF after two beeps. **MICROCARE** 5KW INVERTER **OFF**

: 54.2

: 10.0

9. INVERTER MENU

In either the inverter ON or OFF mode, use the OR U buttons to view the menu displays on the LCD screen explained below.

9.1 Power rating of the UPS

The load drawn as a % of the rated power is displayed.

MICROCARE 5KW INVERTER = 47%

By turning on a load, the **OUTPUT** % will change to indicate the **LOAD** as a % of the unit being used in KW. Above 5% of load is displayed. This status menu is displayed when the inverter runs from the grid or in inverter mode.

9.2 Battery Volts and Amps

Battery voltage and the **amps** that the UPS is drawing from the battery when the inverter runs from the battery.

BATT VOLTS : 54.2 BATT AMPS : 7.0

BATT VOLTS

CHGR AMPS

This status menu is only displayed in inverter mode, the Green and Yellow LED is on.

9.3 Battery Charge Amps and Volts

This shows the **Charge Amps** that are being put back Into the battery bank from the charging source.

The inverter only charges the batteries when a grid connection is present

This status menu is only displayed when the inverter runs from the grid, the Green LED is on.

9.4 Output Volts and Amps

AC Output voltage and amps that the load is drawing In inverter mode.

UPS VOLTS : 220 UPS AMPS : 7.0

This status menu is displayed when the inverter runs in inverter mode, the Green and Yellow Led is on.

9.5 Grid Volts and Grid Amps

Grid Volts and power draw from the grid power supply:

GRID VOLTS : 227 GRID AMPS : 10.0

This status menu is displayed when running from the grid, the Green LED is on

9.6 Temperature

Internal temperature of the inverter.

TEMPERATURE 26.3 Deg/Cel

9.7 Signal Strength

Control cards in the Inverter have 100% communication.

SIGNAL STRENGTH DISPLAY- UPS 100%

9.8 Serial Number & Software Version

Serial number of the inverter. Software version of the inverter. SN: MCxxx7777 FW: VXXXX

The Serial number of the inverter needs to be noted and supplied when requesting any fault support information.

9.9 System Setup

This menu allows the user **TO CHANGE** the system settings

ENTER SETUP MENU?

Sections 10 and 11 Covers the programming of the different parameters. Set the "Battery Setup Menu" values first and then make changes to the "System Setup Menu".

9.10 Battery Setup

This menu allows the user TO CHANGE the battery settings

ENTER
BATTERY MENU?

Sections 10 and 11 Covers the programming of the different parameters. Set the "Battery Setup Menu" values first and then make changes to the "System Setup Menu".

9.11 Log Menu

ENTER LOG

MENU?

9.12 Exit & Save

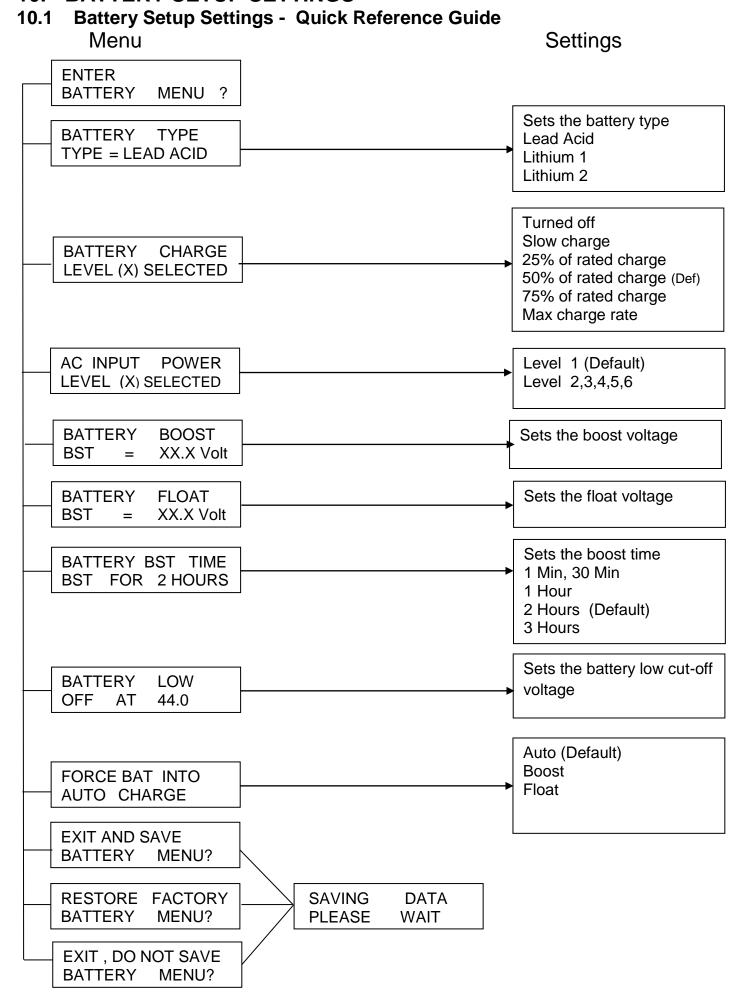
This menu allows the user TO SAVE all the new setting changes

EXIT AND SAVE SETUP MENU?

9.13 Restore Factory Settings

This menu allows the user **TO RESTORE** the factory default settings

RESTORE FACTORY SETUP MENU?


9.14 Exit Do Not Save

This allows the user **NOT TO SAVE** any system settings that were changed.

EXIT DO NOT SAVE SETUP MENU?

Sections 10 and 11 Covers the programming of the different parameters. Set the "Battery Setup Menu" values first and then make changes to the "System Setup Menu".

10. BATTERY SETUP SETTINGS

Battery Setup Procedure 10.2

Please consult your battery supplier for the correct battery charging specifications

Press OR U to select BATTERY Set-Up Menu: ____

ENTER BATTERY

MENU

Press to access the Battery Setup Menu:

Press , the menu changes to Battery Type

10.3 **Battery Type**

To change the **BATTERY TYPE** settings, Press

BATTERY TYPE TYPE = LEAD ACID

This allows the user to select the **BATTERY TYPE**.

BATTERY TYPE TYPE = LEAD ACID OR

BATTERY TYPE TYPE = LITHIUM 1

OR

BATTERY TYPE = LITHIUM 2

"Please consult your battery supplier for the correct battery charging specifications"

Press , the menu changes to Battery Charging Rate

Battery Charging Rate 10.4

To change the **BATTERY CHARGE** settings, Press

BATTERY CHARGE LEVEL (X) **SELECTED**

TURNED OFF 0% of charge rate as per the list supplied below. SLOW CHARGE 5% of charge rate as per the list supplied below. 25% OF RATED CHR 25% of charge rate as per the list supplied below.

50% OF RATED CHR 50% of charge rate as per list supplied below. (Default)

75% of charge rate as per the list supplied below 75% OF RATED CHR .MAX CHARGE RATE 100% of charge rate as per the list supplied below.

Below is the list of available charge amps for the inverters.

Table 10-1: Battery Setup - Battery Charging rates

Table 10-1. Ballery Selup - Ballery Charging rates							
INVERTER		Charging Rate (A)					
Model	5%	25%	50% - Default	75%	100%		
1kW12V	2	10	20	30	40		
1Kw24V	1	5	10	15	20		
1Kw36V	0,75	3,75	7,5	11,25	15		
1Kw48V	0,5	2,5	5	7,5	10		
2Kw12V	4	20	40	60	80		
2Kw24V	2	10	20	30	40		
2kW36V	1,5	7,5	15	22,5	30		
2Kw48V	1	5	10	15	20		
3Kw24V	3	15	30	45	60		
3Kw36V	2	10	20	30	40		
3Kw48V	1,5	7,5	15	22,5	30		
5Kw24V	5	25	50	75	100		
5Kw36V	3,5	17,5	35	52,5	70		
5Kw48V	2,5	12,5	25	37,5	50		

Regarding the battery charge level. The level selected will allow the battery charge to the batteries.

- Great care should be taken when charging batteries. Please consult your battery supplier for the optimum battery charging rate for the batteries you have purchased for your installation.
- Also inform your battery supplier of how many batteries you will be connecting in series, parallel or in series and parallel.
- The charging rate will determine the correct setting as in Table 10-1.
- Overcharging and undercharging can reduce the life of the batteries.

To change the Menu press ①, the menu changes to AC Input Power

10.5 **AC Input Power From Generator**

To change the **AC INPUT POWER** settings, Press

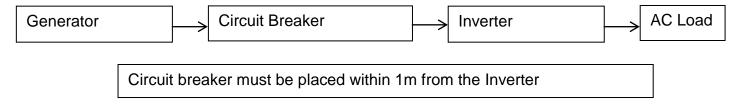
INPUT AC **POWER** LEVEL (X)

This allows the inverter to extract the maximum amount of power from a generator.

The inverter constantly monitors the Voltage from the generator and then applies maximum charge.

LEVEL 1 is the highest load to the generator while

LEVEL 6 is the minimum.


The factory default LEVEL is 1.

This setting only needs to be adjusted if there is a generator connected.

When a generator is running the generator will supply the AC Load first and the inverter charges the batteries with any excess power created from the generator.

Always install a generator with a circuit breaker or contactor connection Keep the circuit breaker off until the generator is running fully.

Turn of the circuit breaker before switching off the generator.

To change the Menu press 1, the menu changes to Battery Boost Voltage

Battery Boost Voltage 10.6

To change the **BATTERY BOOST** settings, Press

BATTERY BOOST BST 58.4 V

This allows the user to adjust the **BATTERY BOOST** voltage. The boost settings can be changed as follows

10.6.1 Battery Boost Voltage Settings

Table 10-2A: Battery Setup - Battery Boost Voltage Firmware V10R5

12V System	24V System	36V System	48V System	
13.4	26.8	40.2	53.6	1
13.8	27.6	41.4	55.2	
14	28	42	56.0	Default – Lithium 2
14.1	28.2	42.3	56.4	Default - Lithium 1
14.4	28.8	43.2	57.6	
14.6	29.2	43.8	58.4	Default – Lead Acid
14.9	29.8	44.7	59.6	
15.2	30.4	45.6	60.8	
15.5	31	46.5	62	

Table 10-3B: Battery Setup - Battery Boost Voltage Firmware V10R6

	48V System	36V System	24V System	12V System
Default Lithium 1 & 2	54.8	41.1	27.4	13.7
	55.2	41.4	27.6	13.8
	56.0	42	28	14
	56.2	42.15	28.1	14.05
	56.4	42.3	28.2	14.1
	57.6	43.2	28.8	14.4
Default – Lead Acid	58.4	43.8	29.2	14.6
	60	45	30	15
	62	46.5	31	15.5

"Please consult your battery supplier for the correct battery charging specifications"

To change the Menu press ①, the menu changes to Battery Float Voltage

10.7 Battery Float Voltage

To change the **BATTERY FLOAT VOLTAGE** settings, Press

BATTERY Float FLOAT = 55.2 V

This allows the user to adjust the **BATTERY FLOAT** voltage. The float settings can be changed as follows

10.7.1 Battery Float Voltage Settings

Table 10-3A: Battery Setup - Battery Float Voltage Firmware V10R5

12V System	24V System	36V System	48V System	
13.2	26.4	39.6	52.8	
13.4	26.8	40.2	53.6	
13.5	27	40.5	54.0	
13.6	27.2	40.8	54.4	Default – Lithium 1
13.8	27.6	41.4	55.2	Default – Lead Acid
14	28	42	56.0	Default – Lithium 2
14.2	28.4	42.6	56.8	

Table 10-3B: Battery Setup - Battery Float Voltage Firmware V10R6

12V System	24V System	36V System	48V System	
13.4	26.8	40.2	53.6	
13.5	27	40.5	54.0	
13.6	27.2	40.8	54.4	Default – Lithium 1
13.7	27.4	41.1	54.8	
13.8	27.6	41.4	55.2	Default Lead Acid
13.9	27.8	41.7	55.6	
14	28	42	56.0	Default – Lithium 2

"Please consult your battery supplier for the correct battery charging specifications"

To change the Menu press , the menu changes to Battery Boost Time

10.8 Battery Boost Time

To change the **BATTERY BOOST TIME** settings, Press

ERY BST TIME FOR 2 HOURS

This allows the user to select the **TIME duration** that the **BOOST VOLTAGE** will be held at before changing to FLOAT.

By Pressing eyou can select 1 min, 30min, 1, 2 or 3 hours.

"Please consult your battery supplier for the correct battery charging specifications"

To change the Menu press ①, the menu changes to Battery Low Off At

10.9 **Battery Low Voltage Shut Down**

To change the **BATTERY LOW OFF AT** settings, Press

BATTERY LOW 44.0 V OF AT

This selects at what BATTERY LOW VOLTAGE the inverter will shut down

"Also known as: low battery voltage cut-out"

This function prevents the inverter from draining the batteries completely.

When the DC voltage drops below a specified level, the inverter will stop functioning.

The system display will give a Low Battery Voltage message or Low Battery Voltage error.

This function is intended to protect both the batteries and the inverter's output.

This voltage is adjustable as below.

By Pressing ENTER you can select to change the Battery Low OFF At voltage.

Table 10-4: Battery Setup – Lead Acid Battery Low Voltage Shutdown

12V System	24V System	36V System	48 V System	
10	20	30	40	
10.5	21	31.5	42	
11	22	33	44	Default – Lead Acid
11.5	23	34.5	46	
12	24	36	48	
12.5	25.5	36.7	50	

Table 10-5: Battery Setup – Lithium Ion Battery Low Voltage Shutdown

,	, ,	,	9	
12V System	24V System	36V System	48V System	
11.7	23.4	35.1	46.8	
11.9	23.8	35.7	47.6	
12.1	24.2	36.3	48.4	
12.3	24.6	36.9	49.2	Default – Lithium 1 &
12.5	25	37.5	50.0	
12.7	25.4	38.1	50.8	

To change the Menu press ①, the menu changes to Force Bat Into

10.10 Force Charge

To change the **FORCAE BAT INTO** settings, Press

INTO FORCE BAT **CHARGE AUTO**

It is possible to **FORCE** the charger to go into another charge mode on a temporary basis. If the charger is in **FLOAT** but you require it to go back into **BOOST** then the next menu will allow this.

Pressing eallows the charge to be changed from, AUTO to BOOST or FLOAT.

Pressing will give you 3 options to **SAVE** the changed data.

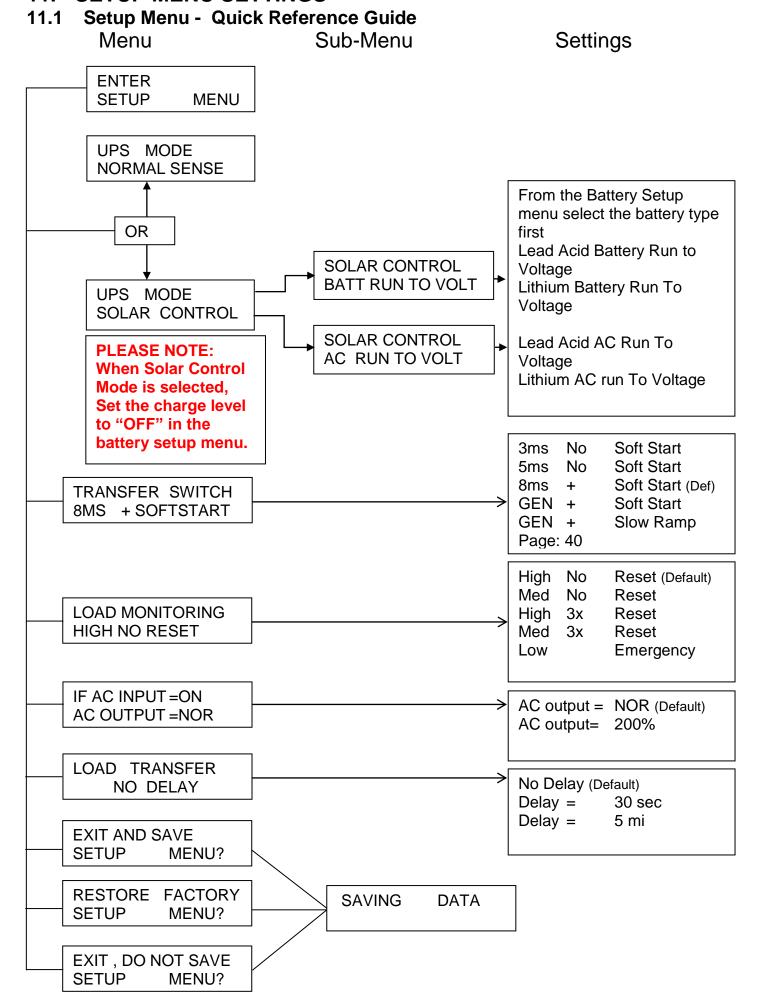
This will give you the options of saving the changes that have been made. Press eat the correct SAVE menu.

EXIT AND SAVE OR **SETUP** MENU?

RESTORE FACTORY **SETUP** MENU?

EXIT, DO NOT SAVE OR **SETUP**

SAVING DATA


PLEASE WAIT

If the changes to the settings need to be saved Press ENTER, When the enter button is pressed then the inverter will show:

If no entry is made for 1 minute the display will return to the main menu and the back light will turn off

MENU?

11. SETUP MENU SETTINGS

MODE **SENSE**

11.2 Setup Menu Settings

Press OR Until the ENTER SETUP MENU appears

ENTER SETUP MENU ?

UPS

NORMAL

Press to enter the **SETUP** menu.

To menu changes to Normal Sense

By Pressing you can select whether the inverter runs in NORMAL SENSE or SOLAR CONTROL mode

11.3 Normal Sense

When to select Normal Sense?

UPS application – "The load is connected to the Grid most of the time"

- The grid "ESKOM" is the primary energy source and the system switches to inverter mode when disconnected from the grid eg: "load shedding".
- As soon the Grid is restored, the load re-connects to the GRID.
- The batteries will only charge when the Grid is present.

Off-Grid application - "No Grid connection is available"

- The battery bank is the primary energy source and the inverter "IS NOT" connected to the grid.
- Renewable energy is used to charge the batteries.
- A generator can be connected to supply the system when needed.

If normal sense is required, press ①, the menu changes to Transfer Switch Time, section 11.7 If Solar Control Mode is required press , the menu changes to Solar Control Mode

11.4 **Solar Control Mode**

SOLAR CONTROL MODE EXPLAINED When to select Solar Control Mode?

UPS MODE **SOLAR** CONTROL

- The batteries are the primary energy source and the inverter "IS" connected to the grid. "Grid assisted solar power system"
- The system uses renewable energy to charge the batteries.
- If the system is correctly sized the inverter will run mostly in inverter mode and will only connect to the grid when the batteries are discharged to a set level.
- The system will run from the batteries for as long as the batteries can be sustained.
- When the battery voltage reaches the set "Battery Run To Voltage", the inverter connects the load to the grid.
- When the battery reaches the set "AC Run To" voltage, the inverter transfers back to inverter mode.
- The inverter charger should be switched off in order for the battery bank to be effectively charged from the renewable energy source.

For Solar Control Mode the following setting must also be changed from the battery setup menu:

Refer to section 10.4. Charging Rate

Battery Charging Rate **TURNED OFF**

0% of charge rate

BATTERY CHARGE LEVEL (X) 0%

Please note: Do not connect a generator when operating in the solar control mode.

To change the Menu, press ①, the menu changes to: Batt Run To

11.5 Battery Run To Voltage

"This setting only applies for Solar Control Mode"

SOLAR CONTROL BATT RUN TO 46.0V

This allows the user to set the level the battery discharges to before switching to mains power.

Press to change the Battery "Run To Voltage".

Battery Run To settings can be changed as follows:

Table 11-1:

Table 11-2:

Lead Acid Battery Run to Voltage settings

	48V System	36V System	24V System	12V System
	42	31.5	21	10.5
	44	33	22	11
Default Lead Acid	46	34.5	23	11.5
	48	36	24	12
	50	37.5	25	12.5

Table 11-2
Lithium Battery Run to Voltage settings

12V System	24V System	36V System	48V System	
12.6	25.2	37.8	50.4	
12.7	25.4	38.1	50.8	
12.8	25.6	38.4	51.2	Default Lithium 1 & 2
12.9	25.8	38.7	51.6	
13	26	39	52.0	

The battery low of at voltage in the "BATTERY SETUP MENU section 11.5 must be set as: For a 48V Lead Acid Battery system: Battery low of at = Batt run to Voltage - 4V

For a 48V Lead Acid Battery system: If the Battery run to voltage is selected as 46V then: Battery low of at = 46V - 4V = 42V

To change the Menu, press ①, the menu changes to AC Run To

11.6 AC Run To Voltage

"This setting only applies for Solar Control Mode"

SOLAR CONTROL AC RUN TO 54.0V

This allows the user to set the level the solar regulator will charge the battery to before the inverter switches back to battery power.

Press to change the AC Run To Voltage,

The AC Run To settings can be changed as follows:

AC Run to Settings

Table 11-3:

Lead Acid AC Run to Voltage settings

12v System	24V System	36V System	48 V System
12	24	36.0	48
12.5	25	37.5	50
13	26	39	52
13.5	27	40.5	54
14	28	42	56

Table 11-4: Lithium AC Run to Voltage Settings

12V System	24V System	36V System	48V System	
13.4	26.8	40.2	53.5	
13.6	27.2	40.8	54.2	
13.7	27.4	41.1	54.8	
13.8	27.6	41.4	55.2	Default Lithium 1 & 2
14	28.0	42.0	56.2	

To change the Menu, press 1, the menu changes to Transfer Switch Time

Transfer Switch Time 11.7

To change the **Transfer Switch Time** settings press **4**.

TRANSFER SWITCH **5MS NO SOFT START**

The inverter uses a transfer relay to switch between the Grid and Inverter Mode. The transfer time can be changed. In most applications the default vale will suffice. For applications where Servers, Desktop Computers, DSTV are connected to the inverter, change the transfer time to "5mS NO SOFTSTART".

The Menu settings can be changed as follows

Table 11-5: System Setup - Transfer Switch time settings

3mS NO SOFTSTART	3 milli second transfer time and will restart load instantly - with mains fail prediction.
5mS NO SOFTSTART	5 milli second transfer time and will restart load instantly - with mains fail prediction.
8mS + SOFTSTART*	(Default) 8 milli second transfer time and will ramp the RMS voltage up in less than 1 second - with mains fail prediction. Default Setting
GEN + SOFTSTART	8 milli second transfer time and will ramp the RMS voltage up in less than 1 second - with no mains fail prediction.
GEN + SLOW RAMP	8 milli second transfer time and will ramp the RMS voltage up in 3 seconds - with no mains fail prediction.

To change the Menu, press ①, the menu changes to Load Monitoring

11.8 **Load Monitoring**

To change the **Load Monitoring** settings press **3**.

LOAD MONITORING NO RESET HIGH

The sensitivity of the SHORT CIRCUIT TRIP may be changed by 5 different settings.

The settings in Table 4 below will determine how the inverter reacts to a short circuit or overload.

- The RED LED lights up and the internal buzzer sounds.
- The inverter switches off if this overload or short circuit persists.
- You can restart the inverter after the overload or short circuit is removed.
- Pressing the Enter button clears the trip, buzzer and the RED Led switches off.
- To start the inverter Press and hold both the Enter-key and the MENU UP-key for up to 3 seconds.

The Menu settings can be changed as follows

Table 11-6: System Setup – Load monitoring settings

Table 11 0. Cyclom Cota	Table 11 6: Cyclem Colap Load Memoring Collings					
HIGH NO RESET*	High sensitivity to short circuits - will trip the inverter after a short delay time period. Default Setting.					
MED NO RESET	Medium sensitivity to short circuits - will trip the inverter after a medium delay time period.					
HIGH 3x RESET	High sensitivity to short circuits - will trip the inverter after a short delay time period, with soft start to prevent in rush current.					
MED 3x RESET	Medium sensitivity to short circuits - will trip the inverter after a short delay time period, with soft start to prevent in rush current.					
LOW EMERGENCY	Low sensitivity to short circuits - will trip the inverter after a long delay time period. Only to be Used in Emergency Situations.					

11.9 Inverter Output Power

To change the **Inverter Output Power** settings press **②**.

IF AC INPUT = ON**AC OUTPUT** = NOR

For UPS operation, either select AC Output = NOR or AC Output = 200% (All 1-5kW Inverters)

For Off-Grid operation, select AC Output = NOR. (All 1-5kW Inverters)

For Grid Assisted operation, select AC Output = NOR. (All 1-5kW Inverters)

For Grid Assisted operation, select AC Output = NOR or AC Output = 200%. (5kW48V Inverters only)

11.9.1 AC Output = Normal

- When the Grid supply is available, the inverter allows the GRID to supply the load at the rated inverter power.
- When the Grid Supply is not available, the INVERTER supplies the load at the rated inverter power.
- A 5Kw Inverter can only supply 5kw of Power. If the load exceeds the rated inverter power, the inverter shuts down due to overload

11.9.2 AC Output = 200%

Selecting AC output = 200% for UPS operation (1-5kW Inverters)

- When the Grid supply is available, the inverter allows the GRID to supply a load up to 200% of the rated power inverter power.
- Eq: A 5Kw Inverter allows the GRID to supply 10kW of power to the load.
- If the grid fails and the load is exceeding 200% of the rated inverter power, the inverter will shut down due to overload

Selecting AC output = 200% for Grid Assisted operation (5kW48V Inverter Only)

When the Grid supply is available in "Solar Control Mode", the inverter allows the Grid to supply a load up to 200% of the rated inverter power.

When the load is powered from the batteries "Inverter mode" and the load exceeds 100% of the rated inverter power, the inverter will re-connect the load to the GRID. The load stays connected to the GRID.

The inverter switches back to Inverter Mode when the load is reduced to 80% of the rated inverter power.

11.10 Load Transfer Time

To change the **Load Transfer Time** settings press **4**.

LOAD **TRANSFER NO DELAY**

This setting applies when the system is connected to the grid.

- When the grid connection is lost eg: Load shedding or any other unforeseen grid loss, the load will be connected to the battery powered inverter.
- When the grid is restored the inverter delays the connection from battery to the grid.
- Transfer time can be set as in Table 10-5.

The settings available are as follows:

Table 11-7: System Setup - Load Transfer Time

rable 11 7: Cyclom Cotap Lodd Transfer Time					
NO DELAY*	As soon as Grid power is available the Inverter will synchronise and switch from battery to Grid. Default Setting .				
DELAY = 30Sec	30 seconds after Grid power is available the Inverter will synchronise and switch from battery to Grid.				
DELAY = 5 Min	5 minutes after Grid power is available the Inverter will synchronise and switch from battery to Grid.				

To change the menu Press 1, the menu changes to the following

11.11 Save/Restore/ Do Not Save Menu

Pressing will give you 3 options to **SAVE** the changed data. The display will show:

EXIT AND SAVE SETUP MENU?

OR

RESTORE FACTORY SETUP MENU?

OR

EXIT, DO NOT SAVE SETUP MENU?

If the changes to the settings need to be saved Press ENTER,

When **!** is pressed then the inverter will show:

SAVING DATA PLEASE WAIT

If no entry is made for 1 minute the display will return to the main menu and the back light will turn off.

12. LOGS

Press OR Until the ENTER LOG MENU appears

ENTER LOG MENU ?

Press **t**o enter the **LOG** menu.

12.1 Battery Voltages

Displays the max (Vm) and min (Vn) DC battery voltage.

Press to view the next log.

Battery Voltages Vm: 39.6 Vn: 37.6

12.2 Battery Currents

I – Displays the Max Battery Discharge Current.

I + Displays the Max Battery Charge Current.

Press to view the next log.

Battery Currents I - 25.3 I + 7.8

12.3 Grid Voltage

Displays the max (Vm) and min (Vn)Grid AC voltage.

Press to view the next log.

Grid Voltage Vm: 245 Vn: 220

12.4 Grid Current

Displays the max (Im) and min (In) AC Load Current.

Press to view the next log.

Grid Currents Im: 4.0 In: 3.5

12.5 UPS Voltages

Displays the max (Vm) and Min (Vn) UPS Voltage.

Press to view the next log.

UPS Voltages Vm: 231 Vn:228

12.6 UPS Current

Displays the Inverter Max (Im) and Min (In) AC Load Current.

Press to view the next log.

UPS Currents Im: 52.5 In:58.7

12.7 Thermal Log

Press to view the next log.

Thermal Log 24.4 deg/cel Max

12.8 Total Run Time

Press to view the next log.

Total Run Time 0D 0H 16M

12.9 Run Time On Battery

Press to view the next log.

Run Time on Batt 0D 0H 4M

12.10 Time on Battery

Press to view the next log.

Time on Batt (R)
0D 0H 4M

12.11 No of Overloads

Press to view the next log

No of Overloads 0 counts

12.12 No of Short Circuits

Displays the Short Circuit counts.

Press to view the next log.

No of Short Circ 0 counts

12.13 Forced Shutdown Counts

Displays the Forced Shutdown counts due to

12.14 Power Failure Counts

To change the **Inverter Output Power** settings press.

Press to view the next log

0 counts

Forced Shutdown

Power Failure (R) 4 counts

12.15 Reset a few logs

To change the **Inverter Output Power** settings press.

Press to view the next log.

Reset (R)
Recorded Logs?

12.16 Exit Recorded Log

To Exit the recorder log screen press .

Exit
Recorded Log?

12.17 Delete All Logs

Press OR Until the ENTER LOG MENU appears

ENTER LOG MENU ?

13. TROUBLESHOOTING

Symptom	Possible Cause	Remedy
Inverter not charging	The unit is inverting or not connected to the grid	Connect inverter input to AC Source
Inverter not charging	The unit is connected to the grid but is in a mode or stage that does not use the charger such as Solar Control mode	
Inverter not charging	The unit is connected to the grid but the charger has been turned off	Enable charging in the Battery setup menu.
Inverter not switching on	Batteries are discharged to a low level	Recharge the batteries
Inverter not switching on	Battery breaker turned off	Turn the breaker on
Inverter inverting all the time In UPS mode	Grid disconnected	
Inverter fan runs all the time	Charging above 50% of rated charge rate or the Load is above 60% of rated Inverter capacity	Switch off some loads
Inverter Inverting all the time	Solar Control mode, battery in limits	
Inverter not switching on	Fuse blown	Replace fuse

14. SPECICATIONS OF INVERTERS

The Specifications apply when the Inverter Setting is set for AC Output = Normal Section11.9.1

14.1 12 V Inverter Specifications

Model	•	1kW12V	2kW12V		
Capacity	Watt	1000	2000		
	Nominal Voltage	12 VDC	12 VDC		
DC Input	Acceptable Voltage	10-15 VDC	10-15 VDC		
DC Input	Maxi Input Amps	100 A	200 A		
	Standby Power	15 W	25 W		
	Voltage	230 \	/AC		
	Amps	5 A	10 A		
	Voltage Regulation	< 3 % RMS for entire battery	voltage range		
	Frequency	50Hz	50Hz		
AC Quitout	Frequency Regulation	± 0.1Hz			
AC Output	Power Factor	1			
	Wave Form	Pure Sine Wave			
	Efficiency	90%			
	Hardware Protection	Circuit Breaker			
	Overload Protection	Programmable Overload leve	els and Auto Retry		
	Float Voltage	Refer to Section 10.7			
	Boost Voltage	Refer to Section 10.6			
Charger	Boost Time	Selectable 1, 2, 3 hours.			
	Maximum Current	40 A	80 A		
	Generation Mode	Depending on the generator	power available.		

14.2 24 V Inverter Specifications

14.2 24 \	Inverter Specifications					
Model		1kW24V	2kW24V	3kW24V	5kW24V	
Capacity	Watt	1000	2000	3000	5000	
	Nominal Voltage	24 VDC	24 VDC	24 VDC	24 VDC	
DC Input	Acceptable Voltage	20-30 VDC	20-30 VDC	20-30 VDC	20-30 VDC	
DC Input	Maxi Input Amps	50 A	100 A	150 A	250 A	
	Standby Power	15 W	25 W	40 W	60 W	
	Voltage		230	VAC		
	Amps	5 A	10 A	14 A	22 A	
	Voltage Regulation	< 3 % RMS for entire battery voltage range				
	Frequency	50Hz				
AC Quitaut	Frequency Regulation	± 0.1Hz				
AC Output	Power Factor	1				
	Wave Form	Pure Sine Wave				
	Efficiency	90%				
	Hardware Protection	Circuit Break	er			
	Overload Protection	Programmab	le Overload lev	els and Auto R	etry	
	Float Voltage	Refer to Sect	ion 10.7			
	Boost Voltage	Refer to Sect	ion 10.6			
Charger	Boost Time	Selectable 1,	2, 3 hours			
	Maximum Current	20 A	40 A	60 A	100 A	
	Generation Mode	Depending on the generator power available.				

14.3 36 V Inverter Specifications

Model		1kW36V	2kW36V	3kW36V	5kW36V	
Capacity	Watt	1000	2000	3000	5000	
	Nominal Voltage	36 VDC	36 VDC	36 VDC	36 VDC	
DC Input	Acceptable Voltage Range	30-40 VDC	30-40 VDC	30-40 VDC	30-40 VDC	
DC Input	Maxi Input Amps	33 A	66 A	100 A	166 A	
	Standby Power	15 W	25 W	40 W	60 W	
	Voltage		230	VAC		
	Amps	5 A	10 A	14 A	22 A	
	Voltage Regulation	< 3 % RMS fo	or entire battery	voltage range		
	Frequency	50Hz				
AC Output	Frequency Regulation	± 0.1Hz				
AC Output	Power Factor	1				
	Wave Form	Pure Sine Wave				
	Efficiency	90%				
	Hardware Protection	Circuit Breaker				
	Overload Protection	Programmabl	e Overload leve	els and Auto R	etry	
	Float Voltage	Refer to Secti	ion 10.7			
	Boost Voltage	Refer to Secti	ion 10.6			
Charger	Boost Time	Selectable 1,	2, 3 hours			
	Maximum Current	15 A	30 A	40 A	70 A	
	Generation Mode	Depending on the generator power available.				

14.4 48 V Inverter Specifications

Model		1kW48V	2kW48V	3kW48V	5kW48V		
Capacity	Watt	1000	2000	3000	5000		
	Nominal Voltage	48 VDC	48 VDC	48 VDC	48 VDC		
DC Innut	Acceptable Voltage Range	40-60 VDC	40-60 VDC	40-60 VDC	40-60 VDC		
DC Input	Maxi Input Amps	25 A	50 A	75 A	125 A		
	Standby Power	15 W	25 W	40 W	60 W		
	Voltage		230	VAC			
	Amps	5 A	10 A	14 A	22 A		
40.0.4	Voltage Regulation	< 3 % RMS fo	< 3 % RMS for entire battery voltage range				
	Frequency	50Hz	50Hz				
	Frequency Regulation	± 0.1Hz	± 0.1Hz				
AC Output	Power Factor	1					
	Wave Form	Pure Sine Wa	Pure Sine Wave				
	Efficiency	90%	90%				
	Hardware Protection	Circuit Breaker					
	Overload Protection	Programmab	le Overload lev	els and Auto R	etry		
	Float Voltage	Refer to Sect	ion 10.7				
	Boost Voltage	Refer to Section 10.6					
Charger	Boost Time	Selectable 5r	nin, 1, 2, 3 hou	rs			
	Maximum Current	10 A	20 A	30 A	50 A		
	Generation Mode	Depending or	Depending on the generator power available.				

15. DESTRIER ELECTRONICS LIMITED CARRY- IN WARRANTY

Destrier Electronics warrants this 1-5kW range of inverters against defects in workmanship and materials, fair wear and tear accepted, for a period of 3 (three) years from the date of delivery/collection and is based on a carry-in basis. Where the installation of the product makes it impractical to carry-in to our workshops, Destrier Electronics reserves the right to charge for travel time and kilometres travelled to and from the site where the product is installed.

During this warranty period, Destrier Electronics will, at its own discretion, repair or replace the defective product free of charge. This warranty will be considered void if the unit has suffered any physical damage or alteration, either internally or externally, and does not cover damages arising from improper use such as, but not exclusive to:

- · Reverse of battery polarity.
- Inadequate or incorrect connection of the product and/or of its accessories.
- Mechanical shock or deformation.
- Contact with liquid or oxidation by condensation.
- Use in an inappropriate environment (dust, corrosive vapour, humidity, high temperature, biological infestation.)
- Breakage or damage due to lightning, surges, spikes or other electrical events.
- Connection terminals and screws destroyed or other damage such as overheating due to insufficient tightening of terminals.
- When considering any electronic breakage except due to lightning, reverse polarity, overvoltage, etc. the state of the internal control circuitry determines the warranty.

This warranty will not apply where the product has been misused, neglected, improperly installed, or repaired by anyone else than Destrier Electronics or one of its authorised Qualified Service Partners. In order to qualify for the warranty, the product must not be disassembled or modified. Repair or replacement are our sole remedies. Destrier Electronics shall not be liable for damages, whether direct, incidental, special, or consequential, even caused by negligence or fault. Destrier Electronics owns all parts removed from repaired products. Destrier Electronics uses new or re-conditioned parts made by various manufacturers in performing warranty repairs and building replacement products. If Destrier Electronics repairs or replaces a part of a product, its warranty term is not extended. Removal of serial nos. may void the warranty.

All remedies and the measure for damages are limited to the above. Destrier Electronics shall in no event be liable for consequential, incidental, contingent or special damages, even if having been advised of the probability of such damages. Any and all other warranties expressed or implied arising by law, course of dealing, course of performance, usage of trade or otherwise, including but not limited to implied warranties of merchantability and fitness for a particular purpose, are limited in duration to a period of 3 (three) years from the date of purchase.

Life Support Policy:

As a general policy, Destrier Electronics does not recommend the use of any of its products in life support applications where failure or malfunction of the Destrier Electronics product can be reasonably expected to cause failure of the life support device or to significantly affect its safety or effectiveness.

Destrier Electronics does not recommend the use of any of its products in direct patient care. Destrier Electronics will not knowingly sell its products for use in such applications unless it receives in writing assurances satisfactory to Destrier Electronics that the risks of injury or damage have been minimised, the customer assumes all such risks, and the Liability of Destrier Electronics is adequately protected under the circumstances.

Caution:

Our products are sensitive. While all care is taken by us to dispatch goods with adequate packaging, Destrier Electronics is not responsible for any damages caused to products after they have left our premises.

16. REGISTRATION OF MY MICROCARE PRODUCT

Product Serial Number:	
Product Description:	
Date Purchased	
	From Whom was the Inverter Purchased:
Company Name	
Contact Person	
Contact Number	
E-mail Address	
	Installation Company Information:
Company Name	
Contact Person	
Contact Number	
E-mail Address	
	Details of Product Owner
Name & Surname	
Address	
City & Province	
Contact Number	
E-mail Address	
Date Installed	
	e Industrial Park, Korsten, Port Elizabeth Newton Park. 6055

P.O.Box 7227, Newton Park, 6055 Tel: 041 453 5761, Fax: 041 – 453 5763

Technical Support e-mail: support@microcare.co.za

Website: www.microcare.co.za

Registration by fax: 041 - 4535763

Registration by e-mail: support@microcare.co.za

Online Registration: <u>www.microcare.co.za/register-my-product</u>